Skip to main content

Table 3a. Immune-Based Therapy Under Evaluation for the Treatment of COVID-19: Clinical Data to Date

Last Updated: November 3, 2020

Information presented in this table may include data from preprint/non-peer reviewed articles. This table will be updated as new information becomes available.

Table 3a. Immune-Based Therapy Under Evaluation for Treatment of COVID-19: Clinical Data to Date
Table 3a. Immune-Based Therapy Under Evaluation for Treatment of COVID-19: Clinical Data to Date

References

  1. Food and Drug Administration. EUA 26382: Emergency Use Authorization (EUA) Decision Memo. 2020. Available at: https://www.fda.gov/media/141480/download. Accessed August 31, 2020.
  2. Food and Drug Administration. EUA 26382: emergency use authorization (EUA) request. 2020. Available at: https://www.fda.gov/media/141481/download.
  3. Food and Drug Administration. EUA of COVID-19 convalescent plasma for the treatment of COVID-19 in hospitalized patients: fact sheet for health care providers. 2020. Available at: https://www.fda.gov/media/141478/download. Accessed September 22, 2020.
  4. Wang X, Guo X, Xin Q, et al. Neutralizing antibodies responses to SARS-CoV-2 in COVID-19 inpatients and convalescent patients. Clin Infect Dis. 2020. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32497196.
  5. Li L, Zhang W, Hu Y, et al. Effect of convalescent plasma therapy on time to clinical improvement in patients with severe and life-threatening COVID-19: A randomized clinical trial. JAMA. 2020. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32492084.
  6. Gharbharan A, Jordans CCE, GeurtsvanKessel C, et al. Convalescent plasma for COVID-19: a randomized clinical trial. medRxiv. 2020;Preprint. Available at: https://www.medrxiv.org/content/10.1101/2020.07.01.20139857v1.
  7. Agarwal A, Mukherjee A, Kumar G, et al. Convalescent plasma in the management of moderate COVID-19 in India: an open-label parallel-arm Phase II multicentre randomized controlled trial (PLACID Trial). medRxiv. 2020;Preprint. Available at: https://www.medrxiv.org/content/10.1101/2020.09.03.20187252v2.
  8. Joyner MJ, Wright RS, Fairweather D, et al. Early safety indicators of COVID-19 convalescent plasma in 5,000 patients. J Clin Invest. 2020. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32525844.
  9. Joyner MJ, Senefeld JW, Klassen SA, et al. Effect of convalescent plasma on mortality among hospitalized patients with COVID-19: initial three-month experience. medRxiv. 2020. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32817978.
  10. Liu STH, Lin HM, Baine I, et al. Convalescent plasma treatment of severe COVID-19: a propensity score-matched control study. Nat Med. 2020. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32934372.
  11. Salazar E, Christensen PA, Graviss EA, et al. Treatment of coronavirus disease 2019 patients with convalescent plasma reveals a signal of significantly decreased mortality. Am J Pathol. 2020. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32795424.
  12. Salazar E, Perez KK, Ashraf M, et al. Treatment of COVID-19 patients with convalescent plasma in Houston, Texas. medRxiv. 2020;Preprint. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32511574.
  13. Ahn JY, Sohn Y, Lee SH, et al. Use of convalescent plasma therapy in two COVID-19 patients with acute respiratory distress syndrome in Korea. J Korean Med Sci. 2020;35(14):e149. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32281317.
  14. Pei S, Yuan X, Zhang Z, et al. Convalescent plasma to treat COVID-19: Chinese strategy and experiences. medRxiv. 2020;Preprint. Available at: https://www.medrxiv.org/content/10.1101/2020.04.07.20056440v1.
  15. Ye M, Fu D, Ren Y, et al. Treatment with convalescent plasma for COVID-19 patients in Wuhan, China. J Med Virol. 2020. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32293713.
  16. Zeng Q, Yu Z, Gou J, et al. Effect of convalescent plasma therapy on viral shedding and survival in COVID-19 patients. The Journal of Infectious Diseases. 2020; In press. Available at: https://academic.oup.com/jid/advance-article/doi/10.1093/infdis/jiaa228/5826985.
  17. Duan K, Liu B, Li C, et al. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc Natl Acad Sci USA. 2020. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32253318.
  18. Shao Z, Feng Y, Zhong L, et al. Clinical efficacy of intravenous immunoglobulin therapy in critical patients with COVID-19: A multicenter retrospective cohort study. medRxiv. 2020;Preprint. Available at: https://www.medrxiv.org/content/10.1101/2020.04.11.20061739v2.
  19. Lukomska B, Stanaszek L, Zuba-Surma E, Legosz P, Sarzynska S, Drela K. Challenges and controversies in human mesenchymal stem cell therapy. Stem Cells Int. 2019;2019:9628536. Available at: https://www.ncbi.nlm.nih.gov/pubmed/31093291.
  20. Shetty AK. Mesenchymal stem cell infusion shows promise for combating coronavirus (COVID-19)-induced pneumonia. Aging Dis. 2020;11(2):462-464. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32257554.
  21. Leng Z, Zhu R, Hou W, et al. Transplantation of ACE2(-) mesenchymal stem cells improves the outcome of patients with COVID-19 pneumonia. Aging Dis. 2020;11(2):216-228. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32257537.
  22. Shu L, Niu C, Li R, et al. Treatment of severe COVID-19 with human umbilical cord mesenchymal stem cells. Stem Cell Res Ther. 2020;11(1):361. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32811531.
  23. Chen J, Hu C, Chen L, et al. Clinical study of mesenchymal stem cell treating acute respiratory distress syndrome induced by epidemic Influenza A (H7N9) infection, a hint for COVID-19 treatment. Engineering (Beijing). 2020. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32292627.
  24. Dexamethasone (DECADRON) [package insert]. Food and Drug Administration. 2019. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/011664s064lbl.pdf.
  25. Liu D, Ahmet A, Ward L, et al. A practical guide to the monitoring and management of the complications of systemic corticosteroid therapy. Allergy Asthma Clin Immunol. 2013;9(1):30. Available at: https://www.ncbi.nlm.nih.gov/pubmed/23947590.
  26. Spiegel M, Pichlmair A, Muhlberger E, Haller O, Weber F. The antiviral effect of interferon-beta against SARS-coronavirus is not mediated by MxA protein. J Clin Virol. 2004;30(3):211-213. Available at: https://www.ncbi.nlm.nih.gov/pubmed/15135736.
  27. Interferon alfa-2b (INTRON A) [package insert]. Food and Drug Administration. 2018. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/103132Orig1s5199lbl.pdf. Accessed April 8, 2020.
  28. Peginterferon alfa-2a (PEGASYS) [package insert]. Food and Drug Administration. 2017. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/103964s5270lbl.pdf. Accessed April 8, 2020.
  29. Zhou Q, Chen V, Shannon CP, et al. Interferon-alpha2b Treatment for COVID-19. Front Immunol. 2020;11:1061. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32574262.
  30. Synairgen announces positive results from trial of SNG001 in hospitalised COVID-19 patients [press release]. July 20, 2020.
  31. Davoudi-Monfared E, Rahmani H, Khalili H, et al. Efficacy and safety of interferon beta-1a in treatment of severe COVID-19: a randomized clinical trial. Antimicrob Agents Chemother. 2020. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32661006.
  32. Hung IF, Lung KC, Tso EY, et al. Triple combination of interferon beta-1b, lopinavir-ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, Phase 2 trial. Lancet. 2020;395(10238):1695-1704. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32401715.
  33. Haji Abdolvahab M, Mofrad MR, Schellekens H. Interferon beta: from molecular level to therapeutic effects. Int Rev Cell Mol Biol. 2016;326:343-372. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27572132.
  34. Arabi YM, Shalhoub S, Mandourah Y, et al. Ribavirin and interferon therapy for critically ill patients with Middle East respiratory syndrome: a multicenter observational study. Clin Infect Dis. 2019. Available at: https://www.ncbi.nlm.nih.gov/pubmed/31925415.
  35. Martinez MA. Compounds with therapeutic potential against novel respiratory 2019 coronavirus. Antimicrob Agents Chemother. 2020. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32152082.
  36. Schofield A. Synairgen to start trial of SNG001 in COVID-19. 2020. Available at: https://pharmafield.co.uk/pharma_news/synairgen-to-start-trial-of-sng001-in-covid-19/. Accessed April 8, 2020.
  37. Anakinra (Kineret) [package insert]. Food and Drug Administration. 2012. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/103950s5136lbl.pdf. Accessed April 8, 2020.
  38. Huet T, Beaussier H, Voisin O, et al. Anakinra for severe forms of COVID-19: a cohort study. Lancet Rheumatology. 2020. Available at: https://www.thelancet.com/pdfs/journals/lanrhe/PIIS2665-9913(20)30164-8.pdf.
  39. Aouba A, Baldolli A, Geffray L, et al. Targeting the inflammatory cascade with anakinra in moderate to severe COVID-19 pneumonia: case series. Ann Rheum Dis. 2020. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32376597.
  40. Cavalli G, De Luca G, Campochiaro C, et al. Interleukin-1 blockade with high-dose anakinra in patients with COVID-19, acute respiratory distress syndrome, and hyperinflammation: a retrospective cohort study. Lancet Rheumatology. 2020. Available at: https://www.thelancet.com/journals/lanrhe/article/PIIS2665-9913(20)30127-2/fulltext.
  41. Sarilumab (KEVZARA) [package insert]. Food and Drug Administration. 2018. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/761037s001lbl.pdf. Accessed April 8, 2020.
  42. Wang Z, Yang B, Li Q, Wen L, Zhang R. Clinical features of 69 cases with coronavirus disease 2019 in Wuhan, China. Clin Infect Dis. 2020. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32176772.
  43. Regeneron and Sanofi provide update on U.S. Phase 2/3 adaptive-designed trial of KEVZARA® (sarilumab) in hospitalized COVID-19 patients [press release]. 2020.
  44. Siltuximab (SYLVANT) [package insert]. Food and Drug Administration. 2019. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/125496s018lbl.pdf. Accessed April 8, 2020.
  45. Gritti G, Raimondi F, Ripamonti D, et al. Use of siltuximab in patients with COVID-19 pneumonia requiring ventilatory support. medRxiv. 2020. Available at: https://www.medrxiv.org/content/10.1101/2020.04.01.20048561v1.
  46. Tocilizumab (ACTEMRA) [package insert]. Food and Drug Administration. 2019. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/125276s127,125472s040lbl.pdf. Accessed April 8, 2020.
  47. Roche. Roche provides an update on the Phase III COVACTA trial of Actemra/RoActemra in hospitalised patients with severe COVID-19 associated pneumonia. 2020. Available at: https://www.roche.com/investors/updates/inv-update-2020-07-29.htm. Accessed August 10, 2020.
  48. Sciascia S, Apra F, Baffa A, et al. Pilot prospective open, single-arm multicentre study on off-label use of tocilizumab in patients with severe COVID-19. Clin Exp Rheumatol. 2020;38(3):529-532. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32359035.
  49. Xu X, Han M, Li T, et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci USA. 2020. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32350134.
  50. Morena V, Milazzo L, Oreni L, et al. Off-label use of tocilizumab for the treatment of SARS-CoV-2 pneumonia in Milan, Italy. Eur J Intern Med. 2020;76:36-42. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32448770.
  51. Capra R, De Rossi N, Mattioli F, et al. Impact of low dose tocilizumab on mortality rate in patients with COVID-19 related pneumonia. Eur J Intern Med. 2020;76:31-35. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32405160.
  52. Campochiaro C, Della-Torre E, Cavalli G, et al. Efficacy and safety of tocilizumab in severe COVID-19 patients: a single-centre retrospective cohort study. Eur J Intern Med. 2020;76:43-49. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32482597.
  53. Acalabrutinib (CALQUENCE) [package insert]. Food and Drug Administration. 2017. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/210259s000lbl.pdf. Accessed June 26, 2020.
  54. Zhang W, Zhao Y, Zhang F, et al. The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): the perspectives of clinical immunologists from China. Clin Immunol. 2020;214:108393. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32222466.
  55. Roschewski M, Lionakis MS, Sharman JP, et al. Inhibition of Bruton tyrosine kinase in patients with severe COVID-19. Sci Immunol. 2020;5(48). Available at: https://www.ncbi.nlm.nih.gov/pubmed/32503877.
  56. Ibrutinib (IMBRUVICA) [package insert]. Food and Drug Administration. 2015. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2015/205552s002lbl.pdf. Accessed May 28, 2020.
  57. Treon SP, Castillo JJ, Skarbnik AP, et al. The BTK inhibitor ibrutinib may protect against pulmonary injury in COVID-19-infected patients. Blood. 2020;135(21):1912-1915. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32302379.
  58. Zanubrutinib (BRUKINSA) [package insert].Food and Drug Administration. 2019. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/213217s000lbl.pdf. Accessed May 20, 2020.
  59. Baricitinib (OLUMIANT) [package Insert]. Food and Drug Administration. 2019. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/207924s001lbl.pdf. Accessed April 8, 2020.
  60. McInnes IB, Byers NL, Higgs RE, et al. Comparison of baricitinib, upadacitinib, and tofacitinib mediated regulation of cytokine signaling in human leukocyte subpopulations. Arthritis Res Ther. 2019;21(1):183. Available at: https://www.ncbi.nlm.nih.gov/pubmed/31375130.
  61. Cantini F, Niccoli L, Matarrese D, Nicastri E, Stobbione P, Goletti D. Baricitinib therapy in COVID-19: A pilot study on safety and clinical impact. J Infect. 2020. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32333918.
  62. Ruxolitinib (JAKAFI) [package Insert]. Food and Drug Administration. 2019. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/202192s017lbl.pdf.
  63. Richardson P, Griffin I, Tucker C, et al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet. 2020;395(10223):e30-e31. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32032529.
  64. Stebbing J, Phelan A, Griffin I, et al. COVID-19: combining antiviral and anti-inflammatory treatments. Lancet Infect Dis. 2020;20(4):400-402. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32113509.
  65. Cao Y, Wei J, Zou L, et al. Ruxolitinib in treatment of severe coronavirus disease 2019 (COVID-19): a multicenter, single-blind, randomized controlled trial. J Allergy Clin Immunol. 2020. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32470486.
  66. La Rosee F, Bremer HC, Gehrke I, et al. The Janus kinase 1/2 inhibitor ruxolitinib in COVID-19 with severe systemic hyperinflammation. Leukemia. 2020. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32518419.
  67. Tofacitinib (XELJANZ) [package insert]. Food and Drug Administration. 2019. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/203214s024,208246s010lbl.pdf. Accessed May 28, 2020.
  68. Migita K, Izumi Y, Jiuchi Y, et al. Effects of Janus kinase inhibitor tofacitinib on circulating serum amyloid A and interleukin-6 during treatment for rheumatoid arthritis. Clin Exp Immunol. 2014;175(2):208-214. Available at: https://www.ncbi.nlm.nih.gov/pubmed/24665995.