Skip to main content

Table 2a. Potential Antiviral Agents Under Evaluation for Treatment of COVID-19: Clinical Data to Date

Last Updated: July 17, 2020

Information presented in this table may include data from preprints or articles that have not been peer reviewed. This table will be updated as new information becomes available.

Table 2a. Potential Antiviral Agents Under Evaluation for Treatment of COVID-19: Clinical Data to Date
Table 2a. Potential Antiviral Agents Under Evaluation for Treatment of COVID-19: Clinical Data to Date

References

  1. Azithromycin (Zithromax) [package insert]. Food and Drug Administration. 2013. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2013/050710s039,050711s036,050784s023lbl.pdf. Accessed June 9, 2020.
  2. Gielen V, Johnston SL, Edwards MR. Azithromycin induces anti-viral responses in bronchial epithelial cells. Eur Respir J. 2010;36(3):646-654. Available at: https://www.ncbi.nlm.nih.gov/pubmed/20150207.
  3. Culic O, Erakovic V, Cepelak I, et al. Azithromycin modulates neutrophil function and circulating inflammatory mediators in healthy human subjects. Eur J Pharmacol. 2002;450(3):277-289. Available at: https://www.ncbi.nlm.nih.gov/pubmed/12208321.
  4. Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30(3):269-271. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32020029.
  5. Vincent MJ, Bergeron E, Benjannet S, et al. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J. 2005;2:69. Available at: https://www.ncbi.nlm.nih.gov/pubmed/16115318.
  6. Liu J, Cao R, Xu M, et al. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov. 2020. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32194981.
  7. Borba MGS, Val FFA, Sampaio VS, et al. Effect of high vs low doses of chloroquine diphosphate as adjunctive therapy for patients hospitalized with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection: a randomized clinical Trial. JAMA Netw Open. 2020;3(4):e208857. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32339248.
  8. Huang M, Tang T, Pang P, et al. Treating COVID-19 with chloroquine. J Mol Cell Biol. 2020. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32236562.
  9. Hydroxychloroquine sulfate (Plaquenil) [package insert]. Food and Drug Administration. 2017. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/009768s037s045s047lbl.pdf. Accessed: June 8, 2020.
  10. Geleris J, Sun Y, Platt J, et al. Observational study of hydroxychloroquine in hospitalized patients with COVID-19. N Engl J Med. 2020. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32379955.
  11. Magagnoli J, Narendran S, Pereira F, et al. Outcomes of hydroxychloroquine usage in United States veterans hospitalized with COVID-19. medRxiv. 2020. [Preprint]. Available at: https://www.medrxiv.org/content/10.1101/2020.04.16.20065920v2.
  12. Tang W, Cao Z, Han M, et al. Hydroxychloroquine in patients with mainly mild to moderate coronavirus disease 2019: open label, randomised controlled trial. BMJ. 2020;369:m1849. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32409561.
  13. Mahevas M, Tran VT, Roumier M, et al. Clinical efficacy of hydroxychloroquine in patients with covid-19 pneumonia who require oxygen: observational comparative study using routine care data. BMJ. 2020;369:m1844. Available at: https://pubmed.ncbi.nlm.nih.gov/32409486/.
  14. Gautret P, Lagier JC, Parola P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. 2020:105949. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32205204.
  15. Gautret P, Lagier JC, Parola P, et al. Clinical and microbiological effect of a combination of hydroxychloroquine and azithromycin in 80 COVID-19 patients with at least a six-day follow up: a pilot observational study. Travel Med Infect Dis. 2020:101663. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32289548.
  16. Molina JM, Delaugerre C, Le Goff J, et al. No evidence of rapid antiviral clearance or clinical benefit with the combination of hydroxychloroquine and azithromycin in patients with severe COVID-19 infection. Med Mal Infect. 2020; 50(4):384 Available at: https://www.sciencedirect.com/science/article/pii/S0399077X20300858?via%3Dihub#!
  17. Chorin E, Dai M, Shulman E, et al. The QT interval in patients with COVID-19 treated with hydroxychloroquine and azithromycin. Nature Medicine. 2020. Available at: https://doi.org/10.1038/s41591-020-0888-2.
  18. Nukoolkarn V, Lee VS, Malaisree M, Aruksakulwong O, Hannongbua S. Molecular dynamic simulations analysis of ritonavir and lopinavir as SARS-CoV 3CL(pro) inhibitors. J Theor Biol. 2008;254(4):861-867. Available at: https://www.ncbi.nlm.nih.gov/pubmed/18706430.
  19. De Meyer S, Bojkova D, Cinati J, et al. Lack of antiviral activity of darunavir against SARS-CoV-2. Int J Infect Dis. 2020;97:7-10. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32479865.
  20. Schoergenhofer C, Jilma B, Stimpfl T, Karolyi M, Zoufaly A. Pharmacokinetics of lopinavir and ritonavir in patients hospitalized with coronavirus disease 2019 (COVID-19). Ann Intern Med. 2020. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32422065.
  21. Hung IF, Lung KC, Tso EY, et al. Triple combination of interferon beta-1b, lopinavir-ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, Phase 2 trial. Lancet. 2020;395(10238):1695-1704. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32401715.
  22. Li Y, Xie Z, Lin W, et al. Efficacy and safety of lopinavir/ritonavir or arbidol in adult patients with mild/moderate COVID-19: an exploratory randomized controlled trial. Med. 2020;In press. Available at: https://www.sciencedirect.com/science/article/pii/S2666634020300015.
  23. Williamson BN, Feldmann F, Schwarz B, et al. Clinical benefit of remdesivir in rhesus macaques infected with SARS-CoV-2. Nature. 2020. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32516797.
  24. Beigel JH, Tomashek KM, Dodd LE, et al. Remdesivir for the treatment of COVID-19—preliminary report. N Engl J Med. 2020. Available at: https://pubmed.ncbi.nlm.nih.gov/32445440. Accessed May 8, 2020
  25. Goldman JD, Lye DCB, Hui DS, et al. Remdesivir for 5 or 10 days in patients with devere COVID-19. N Engl J Med. 2020. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32459919.
  26. Wang Y, Zhang D, Du G, et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. The Lancet. 2020. Available at: https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(20)31022-9/fulltext#seccestitle10.
  27. Grein J, Ohmagari N, Shin D, et al. Compassionate use of remdesivir for patients with severe COVID-19. N Engl J Med. 2020. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32275812.