Skip to main content

Table 2a. Potential Antiviral Agents Under Evaluation for Treatment of COVID-19: Clinical Data to Date

Last Updated: June 11, 2020

Information presented in this table may include data from pre-prints or non-peer reviewed articles. This table will be updated as new information becomes available.

Table 2a. Potential Antiviral Agents Under Evaluation for Treatment of COVID-19: Clinical Data to Date
Table 2a. Potential Antiviral Agents Under Evaluation for Treatment of COVID-19: Clinical Data to Date

References

  1. Azithromycin (ZITHROMAX) [package insert]. Food and Drug Administration. 2013. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2013/050710s039,050711s036,050784s023lbl.pdf. Accessed June 9, 2020.
  2. Gielen V, Johnston SL, Edwards MR. Azithromycin induces anti-viral responses in bronchial epithelial cells. Eur Respir J. 2010;36(3):646-654. Available at: https://www.ncbi.nlm.nih.gov/pubmed/20150207.
  3. Culic O, Erakovic V, Cepelak I, et al. Azithromycin modulates neutrophil function and circulating inflammatory mediators in healthy human subjects. Eur J Pharmacol. 2002;450(3):277-289. Available at: https://www.ncbi.nlm.nih.gov/pubmed/12208321.
  4. Gao J, Tian Z, Yang X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends. 2020;14(1):72-73. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32074550.
  5. Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30(3):269-271. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32020029.
  6. Vincent MJ, Bergeron E, Benjannet S, et al. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J. 2005;2:69. Available at: https://www.ncbi.nlm.nih.gov/pubmed/16115318.
  7. Borba MGS, Val FFA, Sampaio VS, et al. Effect of high vs low doses of chloroquine diphosphate as adjunctive therapy for patients hospitalized with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection: a randomized clinical trial. JAMA Netw Open. 2020;3(4):e208857. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32339248.
  8. Huang M, Tang T, Pang P, et al. Treating COVID-19 with chloroquine. J Mol Cell Biol. 2020. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32236562.
  9. Hydroxychloroquine sulfate (PLAQUENIL) [package insert]. Food and Drug Administration. 2017. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/009768s037s045s047lbl.pdf. Accessed: June 8, 2020.
  10. Geleris J, Sun Y, Platt J, et al. Observational study of hydroxychloroquine in hospitalized patients with COVID-19. N Engl J Med. 2020. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32379955.
  11. Magagnoli J, Narendran S, Pereira F, et al. Outcomes of hydroxychloroquine usage in United States veterans hospitalized with Covid-19. medRxiv. 2020. [Preprint]. Available at: https://www.medrxiv.org/content/10.1101/2020.04.16.20065920v2.
  12. Tang W, Cao Z, Han M, et al. Hydroxychloroquine in patients with mainly mild to moderate coronavirus disease 2019: open label, randomised controlled trial. BMJ. 2020;369:m1849. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32409561.
  13. Mahevas M, Tran VT, Roumier M, et al. Clinical efficacy of hydroxychloroquine in patients with covid-19 pneumonia who require oxygen: observational comparative study using routine care data. BMJ. 2020;369:m1844. Available at: https://pubmed.ncbi.nlm.nih.gov/32409486/.
  14. Gautret P, Lagier JC, Parola P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. 2020:105949. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32205204.
  15. Gautret P, Lagier JC, Parola P, et al. Clinical and microbiological effect of a combination of hydroxychloroquine and azithromycin in 80 COVID-19 patients with at least a six-day follow up: a pilot observational study. Travel Med Infect Dis. 2020:101663. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32289548.
  16. Molina JM, Delaugerre C, Le Goff J, et al. No evidence of rapid antiviral clearance or clinical benefit with the combination of hydroxychloroquine and azithromycin in patients with severe COVID-19 infection. Médecine et Maladies Infectieuses. 2020. [In press]. Available at: https://www.sciencedirect.com/science/article/pii/S0399077X20300858?via%3Dihub#!
  17. Chorin E, Dai M, Shulman E, et al. The QT interval in patients with COVID-19 treated with hydroxychloroquine and azithromycin. Nature Medicine. 2020. Available at: https://doi.org/10.1038/s41591-020-0888-2.
  18. Nukoolkarn V, Lee VS, Malaisree M, Aruksakulwong O, Hannongbua S. Molecular dynamic simulations analysis of ritonavir and lopinavir as SARS-CoV 3CL(pro) inhibitors. J Theor Biol. 2008;254(4):861-867. Available at: https://www.ncbi.nlm.nih.gov/pubmed/18706430.
  19. De Meyer S, Bojkova D, Cinati J, et al. Lack of antiviral activity of darunavir against SARS-CoV-2. medRxiv. 2020. [Preprint]. Available at: https://www.medrxiv.org/content/10.1101/2020.04.03.20052548v1.
  20. Li Y, Xie Z, Lin W, et al. An exploratory randomized, controlled study on the efficacy and safety of lopinavir/ritonavir or arbidol treating adult patients hospitalized with mild/moderate COVID-19 (ELACOI). medRxiv. 2020. [Preprint]. Available at: https://www.medrxiv.org/content/10.1101/2020.03.19.20038984v1.
  21. Warren TK, Jordan R, Lo MK, et al. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature. 2016;531(7594):381-385. Available at: https://www.ncbi.nlm.nih.gov/pubmed/26934220.
  22. Wang Z, Yang B, Li Q, Wen L, Zhang R. Clinical features of 69 cases with coronavirus disease 2019 in Wuhan, China. Clin Infect Dis. 2020. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32176772.
  23. Williamson BN, Feldmann F, Benjamin Schwarz B, et al. Clinical benefit of remdesivir in rhesus macaques infected with SARS-CoV-2. bioRxiv. 2020. [Preprint]. Available at: https://www.biorxiv.org/content/10.1101/2020.04.15.043166v2.full.pdf.
  24. Beigel JH, Tomashek KM, Dodd LE, et al. Remdesivir for the treatment of COVID-19—preliminary report. N Engl J Med. 2020. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32445440. Accessed May 8, 2020
  25. Goldman JD, Lye DCB, Hui DS, et al. Remdesivir for 5 or 10 days in patients with severe COVID-19. N Engl J Med. 2020. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32459919.
  26. Wang Y, Zhang D, Du G, et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. The Lancet. 2020. Available at: https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(20)31022-9/fulltext#seccestitle10.
  27. Grein J, Ohmagari N, Shin D, et al. Compassionate use of remdesivir for patients with severe COVID-19. N Engl J Med. 2020. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32275812.